Which form had the lowest R?

Botanical Gardens

This means this shape loses less heat and therefore needs less energy to run.
If you have time try experimenting, creating imaginative new surfaces.

First check that you have the right materials,

"The main material you will use are ordinary, everyday, plastic drinking cups which you may have been helping to collect. These have been designed to throw away after use which is not good for the environment; however you can put them to good use in this activity before they go into the recycling bin."

MATHS 1 /

Use the formulae below to work out \mathbf{R} for the Arch form.

$$
\begin{aligned}
& S=\pi r L+\pi r^{2} \\
& V=\frac{\pi r^{2} L}{2} \\
& R=S / V
\end{aligned}
$$

MATHS 2 /

Use the formulae below to work out \mathbf{R} for the Dome form.

DOME

$S=2 \pi r^{2}$

$$
V=\frac{2 \pi r^{3}}{3}
$$

$$
R=S / V
$$

‘LET’S DO SOME MATHS!’

NOTE:
Remember that a greenhouse traps heat from the sun. A low Surface to Volume Ratio, R, is best for keeping that heat inside the building.
"Now you can use some mathematics to work out which is the best shape for Botanical Gardens."

STEP $1 /$

In your group you can use paper clips and sticky tape to experiment with connecting the cups together to make a curved surface. The type of surface you create will depend on how you connect the cups together.

"If you connect the cups in a curving line like this you can join these to make an arch or tunnel shaped surface"

[^0]
STEP 2 /

If you connect the cups into hexagon and pentagon shaped clusters you can then join these together following the pattern you find on a football.

"If you follow the pattern on a traditional football you can create a surface in the form of a dome - try experimenting."

[^1]STEP $3 /$
Once you have created a surface, you can fix it using sticky tape to a sheet of corrugated cardboard that can form the base of your model.

STEP 4 /
Make trees and bushes from the green card and add them to your models.

[^2]
[^0]: RIBA Learning_Mathematics Activity_Pg. 3

[^1]: RIBA Learning_Mathematics Activity_Pg. 4

[^2]: RIBA Learning_Mathematics Activity_Pg. 5

